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Regular thermal  regime is examined for a mul t i - layer  medium with perfect and imperfect  contact .  Pos- 
sible exper imental  methods of investigating such a system are determined.  

Let us suppose that appreciable  variation of thermal  conductivity occurs in a certain medium.  Then it is rational 
to treat  the medium as if it were composed of many layers with a constant thermal  diffusivity a i = Xi/Oic i .  The conduc- 
tion equations for each layer may be written in the form 

O~u(O Ou(i) 
ki = CiPi - -  , ( I )  

Ox 2 at 

where the temperature  u(i)(x,  t) depends on t ime t and the coordinate x. 

Assume that the layers are differentiated by the x values 

x = x  o , x = x ~  . . . .  , x = x , , ( X o < X i < . . . < . % ) .  

We also have the boundary conditions and conditions defining perfect contact:  

u(t) (Xo, t) = A = const,  

u") (x+, t) = u"+ ~) ( x .  t), 
(2) 

O 0 , t = "  --u(+ )(x~, t), X ~  u(o (x. t) ~'i+~ ax 

i = 1 , 2  . . . .  , n - - l ,  

uIn) (Xn, t) = B = const,  

and the ini t ia l  conditions 
u(+) (x, 0) = +<+)(x). (3) 

We shall seek a solution using the Doetsch integral  transform [1], where the kernels satisfy the following equation [2]: 

2 o K}O ),~K} ~ (x)  + ~.,. ci, i (x) = O, 

with boundary conditions 

]qt) (~o) = o, K} i) (~,) = K7 +') (~,), 

k+ K} ~)̀  (xi) = ),i+lKSi-t-l)'(xi), i = 1,2 . . . . .  n - l ,  K(n) ] (Xn)= O. 

(4) 

(5) 

where 

Solutions of (4) will  be 

K} 0 (x) = M} 0 s in  ~ix, (x, - -  x) + N} 0 cos  Fixi (x i - -  x), 

where the constants M N ) are determined from (5) and xi = 1/a  i ,  

The determinant  of this system, equated to zero,  gives the character is t ic  equation, which is a transcendental  
2 . . equation for determining the eigenvatues g j .  One of the coefficients M(i), N(i) can be so chosen that the functions 

= K(~)(x) for x i_l < x < x i are normalized. J J Kj(x) 

We must verify that functions Kj(x) will  be orthogonal with weight c(x)p(x) = cip i when xi_ 1 < x < x i on [x0, Xn]~ 
Applying the integral  transform to equations (1), we obtain in the region in question 

~ t  9 - -  uj (t) + ~j uj (t) = f j ,  
I '  

s~ = xl A/<} ~ (Xo) - x~ BK} ~ (x~), (+) 

X n 

Xo 

U (X, t)---- U (0 (X, l) f o r  x i -1  < x , ~  X i .  
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The initial condition (8) in the mapping region gives 

The solution of (6) in conjunction With conditions (7) gives 

2 t 2 uj (t)  = [%. - -  Fj/I~] exp  [ - -  ~ i t l  + F f ~ i .  

(7) 

The solution of the problem set out in (1)-(3) is given by the series in orthogonal transformation kernels 
co 

i =0  

- s 
= ,Sj - -  ~ e x p  [ - -  ,~J tl K} ~ (x) + ,7:7- (x). (s) 

1=0 ~] 1=0 ~tj 

tn this solution we shall confine ourselves to the first term in the sum, which contains the exponential function corre- 
sponding to the regular regime. 

Let [-~1" - -  Fi/?~] K} i) (x) i ~ C. 

Writing the solution u(x, t) in the form 

_Fj /<}o 
P l  1=o 

we evaluate the remainder of the series R(x, t). We have 
Co 

2 
t? (~ (x, t) I -< C E exp [ - -  t~j tl. 

/=1  

2 The t ime of onset of the regular regime can be established by the method proposed in [3], If, for example, gj - j2, 
where j = i, 2 . . . . .  then IR(i)(x, t)l < s, when 

t > ~ C2/4~ ~. 

The rate of heating m = g~ will be a constant for the whole medium, and may be determined experimentally by the 
method set out in [4]. 

It is of some interest to develop a regular regime theory for mult i- layer media with imperfect Contact, 

Let us examine the problem for two layers. Then the thermal conduction equations for the two layers will take 

the form 
02u I~) Ouq) 

az _ _  = ~ _}_ f(o, 
Ox 2 Ot (9) 

u (1)= u ( l ) (x ,  t), /(l)__~(1)(x, t) for x 1 4 x < ~ ;  

tL(2) : /~(2)(X, t), f(2) : . ~ ( 2 )  (X, t )  for ~ < x ~ x2; 0 ~ t < co. 

Functions f(i) give the heat source distribution to within a constant multiplier, 

At the outer boundaries let there be free heat transfer with a region of variable temperature (boundary conditions 

of the third kind) 

0 ~1 u r (xl, t) + ,~ ul,> (xl, t) = qh (t), (10) 
Ox 

O~ 3 J 

0 u<2t (x~, l) + ~3 u r (x~, t) = % (t), (11) 
Ox 

and at the interface let there be incomplete contact 

~ u r  (% t ) 4 -  ~o~u~21 (% t) = %~(t), (1~) 
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o o 
~12 -~X u(I) (~' t) -)- 0~22 ~ U (2) (~., t) = (t333 (t). 

The initial conditions may be taken arbitrarily: 

uo) (x, 0) = q~o)(x), 

u(~) (x, O) = ~(~) (x). 

(13) 

(14) 

(15) 

We shall seek a solution in the form of a series in eigenfunctions of the following problem [5]: 

" , 2 r  h-O) 1 K} ') (x)  + ~' i , --v,j  (x)  = O, 
~22~29 

(1~) 

1 
/(}~)" (x) + ~, ~ . , ,  (x) = o, 

q12~12 
(17) 

where 

with boundary conditions as follows: 

1 1 
L I ~ - - - - - ,  L ~ =  

~22~2~ a~ ~21~  a2 ' 

~IK} 1)' (X1) -~ ~1/(} l) (X1) = 0, 

~12K} l) (~.) -3 !- ~22K} 2) (~) = 0, 

KlJ)' ,~ . , ,  (~) + ~=!q. 2) (r.) = o, 

R K (2) ~ K}2)'(x~) + ~ i (x~) = o. 

The solution of (16) and (17) with boundary conditions (18) w[11 be 

K} l) (x) " A~ )) sin Ppa (~ - -  x) + B} ') cos  t~izl (~ - -  x), 

K} 2) (x) = A} 2) s in E,.z: (x2 - -  x) + B} 2) cos  ~iz2 ( x 2 .  x), 

where x] = a22132~L I, xl = a12B12L2, and the constants A(} ), B(! ) satisfy the system: ] ] 
r~(t) ro ,--O) A p  I~, s} : ) -  : l~ j~c} ' ) l  + - ;  ~ w + ~,~i~ s}')l = o; 

zl(2)~ ~(2) /q(2)~ p(~) 
B} ~ ~12 + .  q e~2 ~,J § --'J w2 w" = 0, 

j ~,22~1^,. ,aj ----- U, 

A(2) = j ~ . ~ j , ~ - -  B~ ) ~ 0, 

where S} I) = s in  IVt.1 (~ - -  xl) ,  S} 2) -= s in  ~iz2 (x., - -  r..), 

C} ~) = cos ~j.~ (~ - -  xl), C} ~) = cos ~;~ (x~ - ~). 

For (19) to be nontrivial, it is necessary that the determinant of (17) equal zero, A(g]) = 0. 
ues of problem (16)-(18) may be determined. 

It is easy to verify that the functions 

tK?(x) for < 
/(i- (x) = [K7 ) (x) for r < x __< x, 

(18) 

(19) 

(20) 

Hence the e igenval-  

are orthogonal with weight L i on [xp x2]. 

One of the coefficients A(!), B(!) is arbitrary, 
] ] 

Kj(x). 
and it may be chosen so as to normalize the system of functions 

Then the function 

u(x ,  t) = I uO)(x' t) for x x ~ x - - .  

for ~ ( x 4 x~ 
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can be expanded in a series in functions Kj(x): 

u(x ,  t ) =  ~ uj(t)  K i ( x ) ,  

i = 0  : 

2 where the summation extends over all j, for which eigenvalues gj are different, and 

x~ 

u-i (l) ---- L, ,[ K} ') (x)u(')(x, t)dx + L2 j" K} 2,(x) u (~) (x, l) dx. 
Xt.  

Transformation (22) is called a Doetsch transform [t] .  

The corresponding inversion formula is given by series (21). Rewriting equations (9) in the form: 

_ _  0 uO) 1 02u(l) ----- La q- Llf  d~, 
~ . ,  Ox ~ --0[-  

1 O ~ u ~  - -  L~ Ou~2~ 
~1~.. 0 x~ "--5-[- + L.f~ 

and transferring them to the mapping region, we have 

- '  ~ h-; (t) S,. (t), uj. (t) + ~. = 

where 1 1 
~ ( 2 ) '  1~,'~ ~ Fi ( t  ) = - -  K}:)'(x:) qh(t) + ", i  t '~ jw2( t ) - t -  

+ 1 ~},~ ( : )  , ~  (t) + ~ KJ .-~ (x,,) ,~ ( t ) - - t ;  (t). 

In the mapping region initial conditions (14), (15) take the form 

(21) 

(22) 

ui(0)=~i. 

Then, in the mapping region, the solution of our problem takes the form 

L ' J 0 

(2a) 

The final solution is given in the form of series (21). We shall examine the question of the regular regime. Let 
2 functions ~01(t), ~012(t), ~022(t), ~a(t), f(i)(x, t) increase no faster than M exlX--qt), where M > 0 and 0 < ~ < gj are cer-  

tain constants [3]. 

We shall determine the transform of solution of (23). We have 

or  

t 

0 

m l  
l~j (t) I "-% 2 e x p [ - -  ~itl,  

where M 1 is a deliberately chosen constant. 

Let the transformation kernels be uniformly bounded 

Kj (x) t ~ K. 

We write solution (21) in the form 

u(x, t) = -dj(t)gj(x) '= ~o(OKo(X) + R(x, t). 
/'=0 

The t ime to reach the regular thermal regime will depend on the remainder of the series R(x, t). 
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But 

o r  

I R(x,  t)l ~ M,K e x p [ - -  ~7/1-1 ~ e x p [ - -  ~ t l  

tR(x,t)l .<~N E e x p [ . _ _ ~ x ~ t l + N e x p [  .r~t I 1 , N = M t K .  
j= l  /=i 

o ~  

2 >__ j2 [3, 6]. Then the series E ( Ix~ ' -  .q)- i  converges. Denoting its sum by o 1, we obtain Let /~j 

i=  

But 

whence 

e ~  

IR(x,t)[ ; N~  
i=l 

e x p  [ - -  fit] + N ~ e x p  [ - -  ~ tl. 

E e x p  [ - -  fit] -% 
]=1 0 

e x p [ ~ O  ~ t ldO  = I . / - ~ -  
YI, w, 

IP,(x, t)t < e,  

as soon as 

[ r 2 1 In 2Nch .~ 
- - -  , - -  . 

l > m a x .  4~ ~' i~1 z J 

1 x-~ 1 
if ( ~/2 = 7 ( ]  - a)~-, 0 < a < - ~ - [ 7 ] ,  '!then!~ ~.~ - - t ~ i 2  ~i _ ~ ' ~ . . .  

]=1 

and 
o ~  

/ = I  

therefore 

when 

(24) 

In(x, t)] < 

4N ~ 1 2 N %  t ~  m a x  
t 

~s 2 , ~ - l n  a j .  (25) 

Thus, the t ime  of onset of the regular regime has been determined. 

It is clear from (24) and (25) that it is convenient to make ~ as large as possible. Therefore, if the eigenvalues 
are renumbered so that go ~ < g~ < tt~ . . . .  then rl may be taken between the first two values ,20 < rl < ~ ,  bearing in mind 
that M e x p ( - ~ t )  must majorize the boundary functions and the source functions. If these functions tend to zero com-  
paratively slowly, the t ime  to reach the regular thermal  regime also increases: the smaller 77, the greater t .  
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